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Standards for plant synthetic
biology: a common syntax for
exchange of DNA parts

Summary

Inventors in the field of mechanical and electronic engineering can

access multitudes of components and, thanks to standardization,

parts fromdifferentmanufacturers can be used in combinationwith

each other. The introduction of BioBrick standards for the assembly

of characterized DNA sequences was a landmark in microbial

engineering, shaping the field of synthetic biology. Here, we

describe a standard for Type IIS restriction endonuclease-mediated

assembly, defining a common syntax of 12 fusion sites to enable the

facile assembly of eukaryotic transcriptional units. This standard has

been developed and agreed by representatives and leaders of the

international plant science and synthetic biology communities,

including inventors, developers and adopters of Type IIS cloning

methods. Our vision is of an extensive catalogue of standardized,

characterized DNA parts that will accelerate plant bioengineering.

Introduction

TheWorld Bank estimates that almost 40%of landmass is used for
cultivation of crop, pasture or forage plants (World Development
Indicators, The World Bank 1960–2014). Plants also underpin
production of building and packing materials, medicines, paper
and decorations, as well as food and fuel. Plant synthetic biology
offers the means and opportunity to engineer plants and algae for
new roles in our environment, to produce therapeutic compounds
and to address global problems such as food insecurity and the
contamination of ecosystems with agrochemicals and macronutri-
ents. The adoption of assembly standards will greatly accelerate the
pathway from product design tomarket, enabling the full potential
of plant synthetic biology to be realized.

The standardization of components, from screw threads to
printed circuit boards, drives both the speed of innovation and the
economy of production in mechanical and electronic engineering.
Products as diverse as ink-jet printers and airplanes are designed and
constructed from component parts and devices. Many of these
components can be selected from libraries and catalogues of
standard parts in which specifications and performance character-
istics are described. The agreement and implementation of
assembly standards that allow parts, even those from multiple

manufacturers, to be assembled together has underpinned inven-
tion in these fields.

This conceptual model is the basis of synthetic biology, with
the same ideal being applied to biological parts (DNA
fragments) for the engineering of biological systems. The first
widely-adopted biological standard was the BioBrick, for
which sequences and performance data are stored in the
Registry of Standard Biological Parts (Knight, 2003). BioBrick
assembly standard 10 (BBF RFC 10) was the first biological
assembly standard to be introduced. Its key feature is that
the assembly reactions are idempotent: each reaction retains
the key structural elements of the constituent parts so that
resulting assemblies can be used as input in identical assembly
processes (Knight, 2003; Shetty et al., 2008). Over the years,
several other BioBrick assembly standards have been developed
that diminish some of the limitations of standard 10 (Phillips
& Silver, 2006; Anderson et al., 2010). Additionally, several
alternative technologies have been developed that confer the
ability to assemble multiple parts in a single reaction (Engler
et al., 2008; Gibson et al., 2009; Quan & Tian, 2009; Li &
Elledge, 2012; Kok et al., 2014).

While overlap-dependent methods are powerful and generally
result in ‘scarless’ assemblies, their lack of idempotency and the
requirement for custom oligonucleotides and amplification of even
well characterized standard parts for each new assembly are
considerable drawbacks (Ellis et al., 2011; Liu et al., 2013; Patron,
2014). Assembly methods based on Type IIS restriction enzymes,
known widely as Golden Gate cloning, are founded on standard
parts that can be characterized, exchanged and assembled cheaply,
easily, and in an automatable way without proprietary tools and
reagents (Engler et al., 2009, 2014; Sarrion-Perdigones et al., 2011;
Werner et al., 2012).

Type IIS assembly methods have been widely adopted in plant
research laboratories with many commonly used sequences being
adapted for Type IIS assembly and subsequently published and
shared through public plasmid repositories such as AddGene
(Sarrion-Perdigones et al., 2011; Weber et al., 2011; Emami et al.,
2013; Lampropoulos et al., 2013; Binder et al., 2014; Engler et al.,
2014; Vafaee et al., 2014). Type IIS assembly systems have also
been adopted for the engineering of fungi (Terfr€uchte et al., 2014)
and ‘IP-Free’ host expression systems have been developed for
bacteria, mammals and yeast (Whitman et al., 2013).

To reap the benefits of the exponential increase in genomic
information andDNAassembly technologies, bioengineers require
assembly standards to be agreed for multicellular eukaryotes. A
standard for plants must be applicable to the diverse taxa that
comprise Archaeplastida and also be capable of retaining the
features that minimize the need to reinvent common steps such as
transferring genetic material into plant genomes. In this Viewpoint
article, the authors of which include inventors, developers and
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adopters of Golden Gate cloning methods from multiple
international institutions, we define a Type IIS genetic grammar
for plants, extendible to all eukaryotes. This sets a consensus for
establishing a common language across the plant field, putting in
place the framework for a sequence and data repository for plant
parts.

Golden Gate cloning

Golden Gate cloning is based on Type IIS restriction enzymes and
enables parallel assembly of multiple DNA parts in a one-pot, one-
step reaction. Contrary to Type II restriction enzymes, Type IIS
restriction enzymes recognize nonpalindromic sequencemotifs and
cleave outside of their recognition site (Fig. 1a). These features
enable the production of user-defined overhangs on either strand,
which in turn allow multiple parts to be assembled in a
predetermined order and orientation using only one restriction
enzyme. Parts are released from their original plasmids and
assembled into a new plasmid backbone in the same reaction,
bypassing time-consuming steps such as custom primer design,
PCR amplification and gel purification (Fig. 1b).

The one-step digestion–ligation reaction can be performed with
any collection of plasmid vectors and parts providing that:
(1) Parts are housed in plasmids flanked by a convergent pair of
Type IIS recognition sequences;

(2) The accepting plasmid has a divergent pair of recognition
sequences for the same enzyme, betweenwhich the part or parts will
be assembled;
(3) The parts themselves, and all plasmid backbones, are otherwise
free of recognition sites for this enzyme;
(4) None of the parts are housed in a plasmid backbone with the
same antibiotic resistance as the accepting plasmid into which parts
will be assembled;
(5) The overhangs created by digestion with the Type IIS
restriction enzymes are unique and nonpalindromic.

To date, several laboratories have converted ‘in-house’ and
previously published plasmids for use with Golden Gate cloning
and have assigned compatible overhangs to standard elements such
as promoters, coding sequences and terminators found in eukary-
otic genes (Sarrion-Perdigones et al., 2011; Weber et al., 2011;
Emami et al., 2013; Lampropoulos et al., 2013; Binder et al., 2014;
Engler et al., 2014). The GoldenBraid2.0 (GB2.0) and Golden
Gate Modular Cloning (MoClo) assembly standards, the main
features of which are described later, are both widely used having
been adopted by large communities of plant research laboratories
such as the European Cooperation in Science and Technology
(COST) network for plant metabolic engineering, the Engineering
Nitrogen Symbiosis for Africa (ENSA) project, the C4 Rice project
and the Realizing Increased Photosynthetic Activity (RIPE)
project. MoClo and GB2.0 are largely, though not entirely,
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Bsa I Bsa I

Bsa I Bsa I

Part 2
Bsa I Bsa I

Part 3
Bsa I Bsa I

Bsa IBsa I

Acceptor

One step digest ion–l igat ion react ion wi th Bsa I  and T4 l igase. 
Select ion for  colonies carry ing plasmids wi th Bacter ia l  select ion B.

Part 1 Part 2 Part 3

Bacter ia l  select ion A Bacter ia l  select ion A
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Fig. 1 (a) Type IIS restriction enzymes such as BsaI are directional, cleaving outside of their nonpalindromic recognition sequences. (b) Providing compatible
overhangs are produced on digestion, standard parts cloned in plasmid backbones flanked by a pair of convergent Type IIS restriction enzyme recognition sites
can be assembled in a single digestion–ligation reaction into an acceptor plasmid with divergent Type IIS restriction enzyme recognition sites and a unique
bacterial selection cassette.
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compatible. Other standards have been developed independently
resulting in parts that are noninterchangeable with laboratories
usingMoClo orGB2.0. Even small variations prevent the exchange
of parts and hinder the creation of a registry of standard,
characterized, exchangeable parts for plants. The standard syntax
defined later addresses these points, establishing a common
grammar to enable the sharing of parts throughout the plant
science community, whilst maintaining substantial compatibility
with the most widely adopted Type IIS-based standards.

A standard Type IIS syntax for plants

Plasmid backbones of standard parts

For sequences to be assembled reliably in a desired order and in a
single step, all internal instances of the Type IIS restriction enzyme
recognition sequence must be removed. The removal of such sites
and the cloning into a compatible backbone, flanked by a
convergent pair of Type IIS restriction enzyme recognition
sequences, is described as ‘domestication’. Assembly of standard
parts into a complete transcriptional unit uses the enzyme BsaI.
Standard parts for plants must minimally, therefore, be domesti-
cated for BsaI (Fig. 2). Parts must also be housed in plasmid
backbones that, apart from the convergent pair of BsaI recognition
sites flanking the part, are otherwise free from this motif. The
plasmid backbone should also not contain bacterial resistance to
ampicillin/carbenicillin or kanamycin as these are commonly
utilized in the plasmids in which standard parts will be assembled
into complete transcriptional units (Sarrion-Perdigones et al.,

2013; Engler et al., 2014) (Fig. 2). When released from its plasmid
backbone by BsaI, each part will contain specific, four-base-pair, 50

overhangs, known as fusion sites (Fig. 2).
For assembly of transcriptional units into multigene constructs

MoClo and GB2.0 require that parts are free of at least one other
enzyme. In both systems transcriptional units can be used directly
or may be assembled with other transcriptional units to make
multigene assemblies. MoClo uses BpiI to assemble multiple
transcriptional units in a single step. These can be reassembled into
larger constructs using either BsaI and BsmBI (Weber et al., 2011)
or by an iterative, fast-track method that alternates between BsaI
and BpiI (Werner et al., 2012). GB2.0 uses BsaI and BsmBI for
iterative assembly of transcriptional units intomultigene constructs
(Sarrion-Perdigones et al., 2013). All three enzymes recognize six
base-pair sequences and produce four-base-pair 50 overhangs.
Compatibility with MoClo and GB2.0 multigene assemble
plasmid systems can therefore be obtained by domesticating BpiI
and BsmBI as well as BsaI recognition sequences (Fig. 2).

Standard parts

A standard syntax for eukaryotic genes has been defined and 12
fusion points assigned (Fig. 3). Such complexity allows for the
complex and precise engineering of genes that is becoming
increasingly important for plant synthetic biology. Standard parts
are sequences that have been cloned into a compatible backbone
(described earlier) and are flanked by a convergent pair of BsaI
recognition sequences and two of the defined fusion sites. The
sequence can comprise just one of the 10 defined parts of genetic

BsaI BsaI

Bsa
I BsaI

Standard part

Compatibility

BsaI
Plant standard
MoClo, GB2.0

BpiIAvoid MoClo

BsmBI
GB2.0

MoClo (Level 2i+)

Type Enzyme Sequence

Avoid

Illegal

(a)

(b)

Fig. 2 (a) Standard parts for plants are free
from BsaI recognition sequences. To be
compatible with Golden Gate Modular
Cloning (MoClo) and GoldenBraid2.0 (GB2.0)
they must also be free from BpiI and BsmBI
recognition sequences. (b) Standard parts are
housed in plasmid backbones flanked by
convergent BsaI recognition sequences. The
plasmid backbones are otherwise free from
BsaI recognition sites. The plasmid backbone
should not confer bacterial resistance to
ampicillin, carbenicillin or kanamycin. When
released fromtheir backbonebyBsaI, parts are
flanked by four-base-pair 50 overhangs,
known as fusion sites.
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syntax bounded by an adjacent pair of adjacent fusion sites.
However, when the full level of complexity is unnecessary, or if
particular functional elements such as amino (N)- or carboxyl (C)-
terminal tags are not required, standard parts can comprise
sequences that span multiple fusion sites (Fig. 3).

The sequences that comprise the fusion sites have been
selected both for maximum compatibility in the one-step
digestion–ligation reaction and to maximize biological func-
tionality. The 50 nontranscribed region is separated into core,
proximal and distal promoter sequences, with the core region
containing the transcriptional start site (TSS). The transcribed
region is separated into coding parts and 50 and 30 untranslated
parts. For maximum flexibility, an ATG codon for methionine
is wholly or partially encoded into two fusion sites. The
translated region, therefore, may be divided into three or four
parts. The 30 nontranslated region is followed by the 30

nontranscribed region, which contains the polyadenylation
sequence (PAS). Amino acids coded by fusion sites within the
coding region have been rationally selected: neutral, nonpolar
amino acids, methionine and alanine, are encoded in the 30

overhangs of parts that may be used to house signal and transit
peptides in order to prevent interference with recognition and
cleavage. An alternative overhang, encoding a glycine, is also
included to give greater flexibility for the fusion of noncleaved
coding parts. Serine, a small amino acid commonly used to link
peptide and reporter tags, is encoded in the overhang that will
fuse C-terminal tag parts to coding sequences.

Universal acceptor plasmids (UAPs)

Universal acceptor plasmids (UAPs) allow the conversion of any
sequence to a standard part in a single step (Fig. 4). This is achieved
byPCRamplification of desired sequences as a single fragment or, if
restriction sites need to be domesticated, as multiple fragments
(Fig. 4). The oligonucleotide primers used for amplification add 50

sequences to allow cloning into the UAP, add the standard fusion
sites that the sequence will be flanked with when released from the
UAP as a standard part with BsaI and can also introduce mutations
(Fig. 4). Two UAPs, pUPD2 (https://gbcloning.org/feature/
GB0307/) and pUAP1 (AddGene no. 63674) can be used to
create new standard parts in the chloramphenicol resistant pSB1C3
backbone, in which the majority of BioBricks housed at the
Registry of Standard Parts are cloned. A spectinomycin resistant
UAP, pAGM9121 has been published previously (AddGene no.
51833; Engler et al., 2014).

Compatibility with multigene assembly systems

Standard parts are assembled into transcriptional units in plasmid
vectors that contain the features and sequences required for delivery
to the cell, for example Left border (LB) and Right border (RB)
sequences and an origin of replication for Agrobacterium-mediated
delivery. Subsequently, transcriptional units can be assembled into
multigene constructs in plasmid acceptors that also contain these
features. It is important that a standard Type IIS syntax be

A1 A2 A3 B1 B2 B3 B4 B5 B6 C1 

5' Non
transcribed Transcribed region 

3' Non
transcribed 

PROM + 5UTR CDS 3UTR + TERM 

GGAG TGAC TCCC TACT AGCC TTCG (*)GCTT GGTA CGCT
Met Ala Ser Stop

Coding sequence 3'UTR 

CCAT(g)
Met

DIST PROX CORE NTAG CDS1 CTAG CDS2 3UTR TERM 5UTR 

5'UTR 

AATG

TSS

PAS

  5' 
Overhang

 3' 
Overhang

Position Name Function

Gly
AGGT

A1
Distal promoter region, cis regulator

or transcriptional enhancer GGAG TGAC

A2 PROX TGAC TCCC

A3 TCCC TACT

5UTR TACT CCAT

CCAT AATG

AATG
AGCC

 /AGGT

AGCC
TTCG

TTCG GCTT

GCTT GGTA

C1 TERM GGTA CGCT

B2

B4

B6

NTAG

CDS2

3UTR

B5 CTAG

B3 CDS1

A4

CORE

DIST

Proximal promoter region, 
or transcriptional enhancer 

Minimal promoter region, including
transcription start site (TSS)

5' untranslated region

N terminal coding region

Coding region – optional
N terminal coding region

Coding region – no start 
or stop codon

C terminal coding region

3' untranslated region

Transcription terminator including 
polyadenylation signal (PAS)

 /AGGT

Fig. 3 Twelve fusion sites have been defined.
These sites allow amultitude of standard parts
to be generated. Standard parts comprise any
portionof a gene cloned into aplasmid flanked
by a convergent pair of BsaI recognition
sequences. Parts can comprise the region
between an adjacent pair of adjacent fusion
sites. Alternatively, to reduce complexity or
when a particular functional element is not
required, parts can span multiple fusion sites
(examples in pink boxes).
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compatible with the plasmid vector systems that are in commonuse
such as GB2.0 and MoClo while also allowing space for further
innovation in Type IIS-mediated multigene assembly methodol-
ogies and the development of plasmid vectors with features
required for delivery to other species andby other deliverymethods.
The definition of a standard Type IIS syntax for plants is therefore
timely and will allow the growing plant synthetic biology
community access to an already large library of standard parts.

Conclusions

Synthetic biology aims to simplify the process of designing,
constructing and modifying complex biological systems. Plants
provide an ideal chassis for synthetic biology, are amenable to
genetic engineering and have relatively simple requirements for
growth (Cook et al., 2014; Fesenko & Edwards, 2014). However,
their eukaryotic gene structure and the methods commonly used
for transferring DNA to their genomes demand specific plasmid
vectors and a tailored assembly standard. Here, we have defined a

Type IIS genetic syntax that employs the principles of part
reusability and standardization. The standard has also been
submitted as a Request for Comments (BBF RFC 106) (Rutten
et al., 2015) at the BioBrick Foundation to facilitate iGEM teams
working on plant chassis. Using the standards described here, new
standard parts for plants can be produced and exchanged between
laboratories enabling the facile construction of transcriptional
units. We invite the plant science and synthetic biology commu-
nities to build on this work by adopting this standard to create a
large repository of characterized standard parts for plants.
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